
THE COMPLETE CLASSIFICATION OF
BOOLEAN EXPRESSIONS

The great advances in mathematics since antiquity, for instance in algebra, have been
dependent to a large extent upon success in finding a usable and efficient symbolism. The
purpose of symbolic language in mathematical logic is to achieve in logic what has been
achieved in mathematics, namely, an exact scientific treatment of the subject matter.

- D. Hilbert, 1928, Principles of Mathematical Logic

1 Introduction

I’d like to explain a cute trick I discovered to literally write truth tables
as non-negative integers in base 2 in their natural order, and how to com-
pletely classify all possible boolean expressions. Lets begin with the following
definition:

Definition: A binary boolean operator is a function which takes as input
two boolean variables and produces as output a single boolean variable.

You may already be familiar with the binary boolean operators AND and
OR. For example, X AND Y return 1 if and only if both of the input boolean
variables X, Y both have the value 1, and returns 0 otherwise; whereas X OR
Y returns 1 if either or both of the two input variables is 1, and 0 otherwise.

Our goal in this paper is to obtain the well known result that there are
exactly 16 binary boolean operators; and our approach can easily be gener-
alized to the case of any number n of input boolean variables.

2 Boolean Expressions

If you are familiar with computer programming, then you already know what
a “boolean expression” is. By definition, a single boolean variable can take
the values of either 0 or 1 (in the language of logic, 0 corresponds to False,
and 1 corresponds to True).

1

If A is a boolean variable, then an example of a boolean expression is

NOT A

This has the following truth table:

NOT =

{
0→ 1
1→ 0

}
Another example involving the boolean operators AND and NOT which acts
on a single input boolean variable would be:

A AND NOT A

this boolean expression will always produce an output of 0 or False (can you
see why?). This means the boolean expression “A AND NOT A” will always
output 0. I call this the “zero function”, because no matter what the input
is, it will always output 0.

The reason for using truth tables is this approach completely sidesteps
needing to deal with boolean expressions at all. This is very important
for obtaining a complete classification, because there are infinitely many
boolean expressions that all correspond to the exact same truth table (if this
is unclear, then prove this as an exercise). In this case, we have seen for
example that the boolean expression “0” and “A AND NOT A” are different
boolean expressions that share the same truth table.

3 One Input Variable

Let’s begin by considering the case of n = 1, for a single boolean input
variable. In other words, lets consider the collection of all functions of the
form

{0, 1} → {0, 1}

In this case, there are two possible input combinations, namely: 0 and 1.
Therefore we can obtain a complete classification of all possible boolean
valued functions which act on these possible input combinations, by forming
the so-called “truth tables”.

There are only four possible such functions, they are the functions: ZERO
(Z), IDENTITY (I), NOT (!), and CONSTANT (C)

Z =

{
0→ 0
1→ 0

}
I =

{
0→ 0
1→ 1

}
! =

{
0→ 1
1→ 0

}
C =

{
0→ 1
1→ 1

}

2

We can also define these four functions as a sequence of symbols xy, since
every boolean function f is defined by a collection of rules which corresponds
to an ordered pair of symbols xy where x, y ∈ {0, 1}

xy =

{
0→ x
1→ y

} {
f : {0, 1} → {0, 1}

}
=

{
00 01
10 11

}
Z = 00 I = 01

! = 10 C = 11

Figure 1 shows how these four functions act on the underlying set {0, 1}

Figure 1

4 Two Input Variables

Let’s now turn our attention to the case of 2 input boolean variables. The
Binary Boolean Operators are functions of the form:

{0, 1} × {0, 1} → {0, 1}

and our goal in this section is to obtain the set of all possible such functions
and show that there are exactly 16 of them.

In this case, there will be 22 = 4 possible input combinations, these are
00, 01, 10, 11 (these happen to be the truth tables from the case of n = 1)
and there will be 24 = 16 total possible truth tables. Since each truth table
can be written as a finite binary string of length 4, it’s easy to see that there
are exactly 16 such possible finite binary strings. This completes the proof
that there are exactly 16 binary boolean operators.

If ♦ is a binary boolean operator that assigns an ordered pair of boolean
variables (x, y)→ z, we write this as

z = x♦y

3

We have already considered the two binary boolean operators AND (&)
and OR (||)

AND =

(1, 1)→ 1
(1, 0)→ 0
(0, 1)→ 0
(0, 0)→ 0

 OR =

(1, 1)→ 1
(1, 0)→ 1
(0, 1)→ 1
(0, 0)→ 0

The next operator we shall consider is called IMPLIES (−→). If the boolean
expresion x −→ y is True, this means “if x is 1, then y is 1”. We can write
this symbolically as

IMPLIES =

(1, 1)→ 1
(1, 0)→ 0
(0, 1)→ 1
(0, 0)→ 1

Observe that x −→ y is 1 whenever x is 0. If we interpret 1 as True and 0
as False, this captures the idea that it’s possible to prove anything if you
start from a false assumption.

Just as we did for the case of one input variable, we can form a sequence
of four symbols wxyz to represent the truth tables for these operators.

wxyz =

(1, 1)→ w
(1, 0)→ x
(0, 1)→ y
(0, 0)→ z

Let’s once again show that there are exactly sixteen distinct binary boolean
operators. Every such operator corresponds to one of the truth tables in the
collection

0000 0001 0010 0011
0100 0101 0110 0111
1000 1001 1010 1011
1100 1101 1110 1111

By listing these truth tables in their natural order and counting their number,
we find there are sixteen.

4

5 Multiple Perspectives

It’s easy to count the total number of truth tables when they are literally
written as non-negative integers in base 2.

Theorem (Truth Tables): For n input boolean variables the total number of distinct
truth tables is exactly 22

n

given n input boolean variables; there are 2n possible input combinations;
therefore the truth tables are finite binary strings of length 2n; and hence
the total number of possible truth tables will be 22

n

The truth table theorem provides a complete classification of all possible
boolean valued functions for any number of input variables, or alternatively,
a complete classification of all possible boolean expressions.

The two most interesting things about this approach are that it enables
us to write the truth tables in their natural order, and the exponential ex-
plosion in the number of truth tables as the number of input variables n is
incremented. This approach also provides some interesting insights into the
non-negative integers from a unique perspective. This kind of “multiple per-
spective” thinking plays an important role in mathematics in general. It’s
not that one or another perspective is better than the others, but rather,
each different way of looking at things provides valuable information about
the underlying mathematical structure, and these different perspectives com-
pliment and reinforce each other and help us get a better idea of how the
mathematical machinery works.

A useful perspective for thinking about a collection of functions is to ab-
stract away the underlying symbols these functions act on, and represent
everything with a diagram where you connect functions together with ar-
rows to show how they are related by function composition. Let’s show this
function diagram for the 4 truth tables from the case n = 1

Figure 2

One way of interpreting this picture is that without anything else the

5

symbols 0 and 1 are completely meaningless: it’s only the composition rules
that give them meaning. But since the choice of the symbols 0 and 1 was
arbitrary, the only thing that really matters is that they are different and
there are only two of them. By removing the underlying symbols we have
gained a deeper insight into the mathematical structure itself.

6

Problems

1. Show that !(x & y) = !x || !y (this is the NAND operator)

2. Show that x NAND x = !x
3. Show that !(!x&!y) = x||y
4. Show that x −→ y = (x & y) || !x
5. Show that

(
x −→ y

)
−→

(
!y −→!x

)
6. Complete the table shown below

0000 0001︸︷︷︸
!(x||y)

0010︸︷︷︸
!(y−→x)

0011

0100 0101 0110 0111

1000 1001 1010 1011
1100 1101 1110 1111

7. Complete the previous table using only the NAND operator

7

